Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7

نویسندگان

  • Ning-Ning Song
  • Ya-Jiao Ke
  • Hai-Tao Yang
  • Hu Zhang
  • Xiang-Qun Zhang
  • Bao-Gen Shen
  • Zhao-Hua Cheng
چکیده

Both microwave absorption and magnetocaloric effect (MCE) are two essential performances of magnetic materials. We observe that LaFe(11.6)Si(1.4)C(0.2)H(1.7) intermetallic compound exhibits the advantages of both giant microwave absorption exceeding -42 dB and magnetic entropy change of -20 Jkg(-1)K(-1). The excellent electromagnetic wave absorption results from the large magnetic loss and dielectric loss as well as the efficient complementarity between relative permittivity and permeability. The giant MCE effect in this material provides an ideal technique for cooling the MAMs to avoid temperature increase and infrared radiation during microwave absorption. Our finding suggests that we can integrate the giant microwave absorption with magnetic refrigeration in one multifunctional material. This integration not only advances our understanding of the correlation between microwave absorption and MCE, but also can open a new avenue to exploit microwave devices and electromagnetic stealth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound

Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for sin...

متن کامل

Strontium hexa-ferrites and polyaniline nanocomposite: Studies of magnetization, coercivity, morphology and microwave absorption

In this work, the investigation of wave absorption, phase formation, crystal structure and magnetic properties of SrFe12O19 hexa-ferrites nanoparticles that synthesized by co-precipitation using a microwave heating system and polyaniline-SrFe12O19 was carried out by using a combination of vector network analyser (VNA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier tra...

متن کامل

Investigation on magnetic and microwave behavior of magnetite nanoparticles coated carbon fibers composite

Radar absorbing materials, i.e. magnetite (Fe3O4) coated carbon fibers (MCCFs) were fabricated by electro-deposition technique. Black-colored single spinel phase Fe3O4 nanoparticles was easily synthesized by hydrothermal method using reduction of a Fe (III) - Triethanolamine complex in an aqueous alkaline solution at 60-80 ◦C. Uniform and compact Fe3O4 films were fabricated on nitric acid treat...

متن کامل

Magnetic and microwave absorption properties of barium hexaferrite doped with La3+ and Gd3+

In this paper, BaLa‌xGdxFe12-2xO19 (x=0.2, 0.4, 0.6 and 0.8) were synthesized via sol-gel auto-combustion method. Fourier transform infrared spectroscopy (FTIR) of samples was represented that the bands at 400 and 500 cm-1 were related to the formation of hexaferrite phase. The (x-ray diffraction) XRD patterns were matched exactly with the structure of barium hexaferrite. (Field emission scanni...

متن کامل

Effect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part I: Al-composite foam compression response

AbstractIn this paper, we investigate effect of Fe–intermetallic compounds on plastic deformation of closed-cell composite Aluminum Foam as filler of thin-walled tubes. However, deformation of the Aluminum foam-filled thin-walled tubes as crushed-box will be presented in Part (II). Composite foams of AlSi7SiC3 and AlSi7SiC3-(Fe) as closed cell were synthesized by powder metallurgy foaming metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013